Vol. 37 No. 6 Dec. 2014

DOI: 10. 13937/j. cnki. sjzjjxyxb. 2014. 06. 001

基于灰色系统 GM(1,1) 模型的制造业人才需求预测

——以江苏省为例

李 慧12,徐 强1

(1. 南京大学 经济学院, 江苏 南京 210093; 2. 江苏省社会科学院 经济研究所, 江苏 南京 210013)

摘 要:制造业是江苏工业的主体,制造业的发展关系江苏的经济增长运行质量。而随着江苏先进制造业和高新技术产业的发展,对制造业高素质人才的需求也将随之增加。因此,正确认识未来江苏制造业对人才的需求,对今后江苏制造业的产业升级有着重要的意义。论文在分析江苏制造业人才现状的基础上,利用灰色系统理论,构建 GM (1,1) 模型,预测了未来十年江苏制造业的人才需求,以预测得出的数据为基础提出了促进制造业人才培养和引进的建议。

关键词: 制造业; 灰色系统; 人才需求预测

中图分类号: F240 文献标识码: A 文章编号: 1007-6875 (2014) 05-0001-04

制造业是江苏工业经济的支柱和主体,是拉动江苏工业增长的关键因素。2012 年,江苏规模以上制造业实现产值114 918.2亿元,占规模以上工业总产值95.7% (江苏省第二次全国经济普查数据资料显示,2008 年规模以上制造业占全部制造业总产值91.8%)。[1] 随着江苏先进制造业和高新技术产业的发展,对制造业高素质人才的需求也将随之增加。正确认识未来江苏制造业对人才的需求,对今后制造业的产业升级有着重要的意义。

一、江苏省制造业人才现状

随着国际制造业大规模向我国转移,江苏的产业结构也不断由低级向高级演进,产业结构在调整中逐步优化。第一产业比重在 2002 年后产值份额逐渐减少;第二产业产值份额多年来稳定地保持在50% 左右,符合其发展阶段水平,且 2005 年后二产的比重开始逐步下降;三产比重在 2004 年后逐步提高。三次产业次序特征也由早期的"一、三、二"模式转变到如今的"二、三、一"模式。而在二产中,占有绝大部分比重的是制造业。近年来江苏制造业就业人数也呈加速增长态势,在岗职工从 2003 年的 216.83 万人增长到 2012 年的 355.03

万人,增长了 63.7%。其中,增长比较迅速的两个产业是电气机械及器材制造业和计算机、通信和其他电子设备制造业,电气机械及器材制造业在岗职工从 2003 年的 12.37 万人增加到 2012 年的 28.45 万人,增长了 130.0%; 计算机、通信和其他电子设备制造业在岗职工人数从 2003 年的 28.08 万人增加到 2012 年的 83.38 万人,增长了 196.9%。

"十二五"时期,是江苏全面实现小康并向基本现代化迈进的重要时期,也是加快转变经济发展方式、推动经济转型升级的关键时期。加快经济发展方式转变,加强科技自主创新,加速提升经济国际化水平,江苏最缺的还是高素质人才。《江苏省中长期人才发展规划纲要(2010—2020年)》提出"适应构建现代产业体系的需要,大力开发重点产业和重点领域急需紧缺专门人才。到2020年,在新能源、新材料、生物技术和新医药、节能环保、软件和服务外包、物联网、电子信息、光电、船舶、工程机械、新能源汽车、轨道交通等重点产业和领域培养引进急需紧缺专门人才100万人。"[2]由此可见,未来十年,制造业发展对人才尤其是高技能人才的需求量是非常巨大的。

收稿日期: 2014-10-09

网络出版地址: http://www.cnki.net/kcms/doi/10.13937/j.cnki.sjzjjxyxb.2014.06.001.html 网络出版时间: 2014 - 12 - 29 15: 30

基金项目: 2013 年江苏省社会科学基金课题 "增创更具活力,更有效率的江苏改革开放新优势研究"(13WTB021); 2014 年江苏省社会科学基金课题 "江苏形成强市场与强政府正向叠加效应的发展模式研究"(14SZB025)。

作者简介: 李慧(1980—),女,江苏徐州人,南京大学经济学院博士生,江苏社科院经济所助理研究员,主要研究方向为区域经济运行分析、转型与发展经济学。

表 1 2003 年—2012 年江苏省制造业在岗职工人数 (单位: 万人)

			, , , , , , , , , , , , , , , , , , , ,
年份	制造业	电气机械及 器材制造业	一 计算机、通信和其 他电子设备制造业
2002	216.02		
2003	216. 83	12. 37	28. 08
2004	222. 99	12. 54	32. 43
2005	245. 17	15. 22	41. 92
2006	281. 22	16. 31	47. 83
2007	299. 46	19. 88	55. 59
2008	296. 42	23. 31	54. 78
2009	294. 48	24. 68	55. 90
2010	319. 51	26. 99	60. 87
2011	349. 35	27. 27	73. 95
2012	355. 03	28. 45	83. 38

数据来源: 历年《江苏统计年鉴》。

二、GM(1,1)预测模型的建立

传统的预测模型的建模方法只能建立离散的递 推模型,这不仅不便对系统作全面的分析,更不能 作长期预测。灰色系统控制理论是近几年发展起来 的一种新型理论体系。用灰色理论建立的灰色预测 模型,不仅预测精度高,而且能对系统作长期预 测。它克服了传统系统理论分析需要数据量大、要 求数据分布较典型、计算量大等缺点。灰色系统作 为预测模型主要是 GM (1,1) 模型。该方法主要 适用于"小样本,贫信息、不确定"问题,尤其 在数据序列较短(历史数据个数较少) 且具有明 显上升趋势时,预测精度较高。由于影响人才需求 量的因素很多,整个系统结构不易明确。作用原理 难以阐述清楚,但对系统的最后结果总能得到一些 资料和信息,即可以知道每年的人才需求量,因而 人才需求量可视为灰色信息。另外,历年的人才需 求量为非负数据列,因此,可以应用灰色控制系统 理论建立动态预测模型。[3] GM (1,1) 模型建立 步骤如下:

第一步: 设时间序列 $x^{(0)}$ 有 n 个观察值,即: $x^{(0)} = \{x^{(0)}(1), x^{(0)}(2), x^{(0)}(3), \cdots, x^{(0)}(n)\}$ $i = 1, 2, \cdots, n$

通过累加生成新序列:

$$x^{(1)} = \{x^{(1)}(1), x^{(1)}(2), \dots, x^{(1)}(n)\} = \{x^{(1)}, x^{(1)} + x^{(0)}(2), \dots, x^{(1)}(n-1) + x^{(0)}(n)\}$$
则 GM(1,1) 模型相应的微分方程为:

$$\frac{dx^{(1)}}{dt} + ax^{(1)} = u \tag{1}$$

其中: a 称为发展灰数; u 称为内生控制灰数。

第二步: 利用最小二乘法求参数 $a \times u$ 。 设 $\overline{a} = (a \mu)^T$ 按最小二乘法可得到: $\overline{a} = (B^T B)^{-1} B^T Y_n$ (2) 其中:

$$B = \begin{bmatrix} -\frac{1}{2} \left[x^{(1)} \left(1 \right) + x^{(1)} \left(2 \right) \right] & 1 \\ -\frac{1}{2} \left[x^{(1)} \left(2 \right) + x^{(1)} \left(3 \right) \right] & 1 \\ \vdots & & \vdots \\ -\frac{1}{2} \left[x^{(n-1)} \left(2 \right) + x^{(1)} \left(n \right) \right] & 1 \end{bmatrix},$$

$$Y_{n} = \begin{bmatrix} x^{(0)} \left(2 \right) \\ x^{(0)} \left(3 \right) \\ \vdots \\ x^{(0)} \left(n \right) \end{bmatrix}$$

第三步: 求出 GM(1,1) 的模型:

$$\hat{x}^{(1)}(i+1) = (x^{(0)}(1) - \frac{u}{a})e^{-ai} + \frac{u}{a}$$
 (3)

还原即可得到:

$$\hat{x}^{(0)}(i) = \hat{x}^{(1)}(i) - \hat{x}^{(1)}(i-1)$$
 $i = 2, 3, \dots, n$

第四步:对模型的精度进行检验。检验的方法有残差检验、关联度检验和后验差检验,其中,残差检验是按点检验;关联度检验是建立的模型与指定函数之间近似性的检验;后验差检验是残差分布统计特性的检验。在本文中采取后验差检验。

首先计算原始数列 $x^{(0)}(i)$ 的均方差 S_0 。 其定义为:

$$\begin{split} S_0 &= \sqrt{\frac{S_0^2}{n-1}} \ S_0^2 &= \sum_{i=1}^n \left[x^{(0)} \left(\ i \right) \right. - \bar{x}^{(0)} \ \right]^2 \ , \\ \bar{x}^{(0)} &= \frac{1}{n} \sum_{i=1}^n x^{(0)} \left(\ i \right) \end{split}$$

然后计算残差数列 $\varepsilon^{(0)}(i) = x^{(0)}(i) - \hat{x}^{(0)}(i)$ 的均方差 S_{10} 其定义为:

$$\begin{split} S_1 &= \sqrt{\frac{S_1^2}{n-1}} \ S_1^2 \ = \ \sum_{i=1}^n \left[\varepsilon^{(0)} \left(\ i \right) \right. - \overline{\varepsilon}^{(0)} \left. \right]^2 \ , \\ \overline{\varepsilon}^{(0)} &= \frac{1}{n} \sum_{i=1}^n \varepsilon^{(0)} \left(\ i \right) \end{split}$$

由此计算方差比为: $c = \frac{S_1}{S_0}$

小误差概率为:

$$p = \{ | \varepsilon^{(0)}(i) - \overline{\varepsilon}^{(0)} | < 0.6745 \cdot S_0 \}$$

最后根据预测精度等级划分表(见表 2),检验得出模型的预测精度。

如果检验合格,则可以用模型进行预测。即用:

$$\hat{x}^{(0)}$$
 $(n+1) = \hat{x}^{(1)}$ $(n+1) - \hat{x}^{(1)}$ (n) , $\hat{x}^{(0)}$ $(n+2) = \hat{x}^{(1)}$ $(n+2) - \hat{x}^{(1)}$ $(n+1)$,…… 作为 $\hat{x}^{(0)}$ $(n+1)$, $\hat{x}^{(0)}$ $(n+2)$,…… 的预测值。[4]

表 2 模型精度等级表

———— 模型精	一级	二级	三级	四级
度等级	(好)	(合格)	(勉强合格)	(不合格)
P	>0.95	>0.8	>0.7	≤0.7
c	< 0.35	< 0.5	< 0.65	≥0.65

三、江苏制造业人才需求预测

由表 1 我们可以得到 2003 年-2012 年江苏省制造业在岗职工人数的原始数据。根据表 1 的数据,建立灰色预测模型 GM(1,1)。

第一步,建立原始数据序列 $x^{(0)}$,并构造累加生成序列 $x^{(1)}$ 。根据表 1 ,有:

 $x^{(0)} = \{ 216.83, 222.99, 245.17, 281.22, 299.46, 296.42, 294.48, 319.51, 349.35, 355.03 \}$

累加生成序列为:

 $x^{(1)} = \{ 216.83, 439.82, 684.99, 966.21, 1265.09, 1856.57, 2176.08, 2525.43, 2880.46 \}$

第二步: 求参数 $a \times u$ 。

$$B = \begin{bmatrix} -328.325 & 1\\ -562.405 & 1\\ -825.6 & 1\\ -1115.94 & 1\\ -1413.88 & 1\\ -1709.33 & 1\\ -2016.325 & 1\\ -2350.755 & 1\\ -2702.945 & 1 \end{bmatrix}$$

 $Y_n = [222. 99 \ 245. 17 \ 281. 22 \ 299. 46 \ 296. 42 ,$ 294. 48 319. 51 349. 35 355. 03]

解得
$$\overline{a} = (B^T B)^{-1} B^T Y_n = \begin{bmatrix} -0.0508 \\ 222,4768 \end{bmatrix} = \begin{bmatrix} a \\ u \end{bmatrix}$$

第三步: 求出 GM(1,1) 的模型。

$$\hat{x}^{(1)}(i+1) = (x^{(0)}(1) - \frac{u}{a})e^{-ai} + \frac{u}{a}$$

 $=4596.29e^{0.0508i}-4379.46$

第四步: 进行后验差检验。

首先计算原始数列 $x^{(0)}$ 的均方差 S_0 。

$$S_0 = \sqrt{\frac{S_0^2}{n-1}} = 40.8663$$

然后计算残差数列 $\varepsilon^{(0)} = x^{(0)}(i) - \hat{x}^{(0)}(i)$ 的均方差 S_1 。其中残差值见表 3。

于是有
$$\varepsilon^{(0)} = \frac{1}{10} \sum_{i=1}^{10} \varepsilon^{(0)}(i) = -0.118$$

$$S_1 = \sqrt{\frac{S_1^2}{n-1}} = 12.106$$

由此计算方差比: $c = \frac{S_1}{S_0} = 0.3$

最小误差概率

$$p = \{ | \varepsilon^{(0)}(i) - \overline{\varepsilon}^{(0)} | < 0.6475 \cdot S_0 \} = 1$$

表 3 江苏省制造业未来十年人才需求预测值及误差

400	/T/). E (1)	エババーナバ	ונאואנורנים ניי	五人人工
年份	原始值	预测值	残差	——— 相对误差
	$x^{(0)}(i)$	$\hat{x}^{(0)}$ (i)	$arepsilon^{(0)}(i)$	(%)
2003	216. 83	215. 90	0	0
2004	222. 99	223. 21	-6.84	-7.412
2005	245. 17	235. 77	16.08	-2.790
2006	281. 22	249. 01	20. 50	5.718
2007	299. 46	263. 02	2. 93	6. 846
2008	296. 42	277. 81	- 14. 31	0. 988
2009	294. 48	293. 42	-5.37	-4.859
2010	319. 51	309. 93	7. 54	-1.681
2011	349. 35	327. 35	-4.59	2. 158
2012	355. 03	345. 75	-0.59	-1.293
2013		365. 19		
2014		385. 73		
2015		407. 41		
2016		430. 32		
2017		454. 51		
2018		480. 07		
2019		507. 05		
2020		535. 57		
2021		565. 68		
2022		597. 48		

由表 2 可知 ρ = 0.3 < 0.35 ρ = 1 > 0.95 ,对照精度等级,预测模型是可靠的,可用此模型进行预测,把"k = 1 ,…9"代入灰色预测模型,计算出的预测值与实际值相比较,两者基本上比较接近。

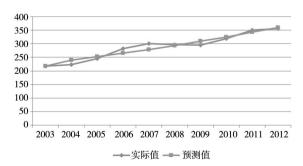


图 1 基于灰色系统预测法的江苏制造业需求人数实际值和预测值比较(万人)

同样 根据电气机械及器材制造业和计算机、通信和其他电子设备制造业的原始数据可以得出未来

十年江苏省电气机械及器材制造业和计算机、通信和其他电子设备制造业人力资源需求预测值。

表 4 江苏省电气机械及器材制造业和计算机、通信和其他电子设备制造业人才需求预测(万人)

时间	电气机械及	计算机、通信和其他
	器材制造业	电子设备制造业
2013	33. 56	88. 78
2014	36. 83	97. 89
2015	40. 41	107. 91
2016	44. 35	118. 98
2017	48. 65	131. 18
2018	53. 38	144. 63
2019	58. 58	159. 46
2020	64. 27	175. 80
2021	70. 52	193. 83
2022	77. 38	213. 70

四、结论

1. 本文应用灰色系统预测方法 建立江苏省制造业人才需求预测以及江苏省电气机械及器材制造业 计算机、通信和其他电子设备制造业人才需求预

参考文献:

- (1) 江苏统计局. 江苏制造业产业升级及发展战略研究 [EB/OL]. [2011 10 17] http://www.jssb.gov.cn/jstj/fxxx/tjfx/201110/t20111017_116040.htm.
- (2) 江苏省中长期人才发展规划纲要(2010 2020 年) [EB/OL]. [2011 - 01 - 04] http://www.jsregz.gov.cn/

测的 GM(1,1) 模型。经检验,预测模型具有良好的精度。预测结果更为接近真实值,可以为实际的预测工作提供参考。

2. 未来十年江苏制造业人才需求仍将保持不 断增长的态势。而随着制造业不断升级,人才需求 也从一般制造业向以计算机、通信和其他电子设备 制造业为代表的先进制造业、高新技术产业和新兴 产业不断转移 这必将加速高素质技能型人才替代 低素质劳动力的进程。根据预测结果 到 2020 年江 苏省制造业人才需求量将超过500万 其中计算机、 通信和其他电子设备制造业人才需求量接近 180 万。因此,作为教育大省的江苏,应紧紧围绕江苏 《十二五规划纲要》和全省新一轮产业振兴规划、物 联网建设和沿海开发等重大战略 针对新能源、节能 环保、新材料、新医药、生物育种、信息网络、新能源 汽车等新兴产业发展需要,紧扣江苏发展先进制造 业对计算机应用与软件技术、数控技术应用、汽车运 用与维修技术、电工电子与自动化技术等专业高技 能人才的迫切需要,加强制造业相关专业人才的培 养力度,为江苏实现基本现代化提供有力的人才 支持。

2111112527/2011/01/2111143798. html.

- (3) 邓聚龙. 灰色控制系统 [M]. 武汉: 华中理工大学出版 社 ,1993:329-345.
- (4) 李学伟 关忠良 陈景艳. 经济数据分析预测学 [M]. 北京: 中国铁道出版社 ,1998: 200 213.

Demand Forecasting of Human Resources in Manufacturing Industry Based on the Grey System GM (1,1) Model—A Case Study in Jiangsu Province

LI Hui^{1 2} XU Qiang¹

(1. Nanjing University, Nanjing, Jiangsu 210093; 2. Jiangsu Academy of Social Sciences, Nanjing, Jiangsu 210013)

Abstract: Manufacturing industry is the main body of industry in Jiangsu , the development of which has the bearing on Jiangsu's economic growth. Along with the development of the advanced manufacturing industry and the high-tech industry , demand of human resources will increase. Therefore , a correct understanding of the future demand will have an important significance on the upgrades of Jiangsu's manufacturing industry. Based on the analysis of present situation of human resources , the article forecasts the future demand of human resources in Jiangsu's manufacturing industry in ten years , by using the theory of gray system and building a GM (1,1) model. It also offers some proposals of promoting the personnel training and the introduction based on the data.

Key words: manufacturing industry; grey system; demand forecasting of human resources

(责任编辑 周吉光)